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The critical behavior of a rectangular lattice of quantum anharmonic (quartic) oscillators, in two and three spatial 
dimensions, is investigated, using a mean-field approach. Even if the quantum case is the only one studied in detail, the 
classical limit can be easily taken, in the final results. The model describes well structural phase transitions. The critical 
temperature is obtained via the formula of the dielectric susceptibility. In order to get analytic results, the polynomial 
potential is replaced with a symmetric double well square one. The results agree qualitatively with those obtained for other 
two well potentials, and with the Monte Carlo simulations. 
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1. Introduction 
 

The anharmonic solid - and especially, a solid with ψ⁴ 

anharmonicities - attracts much interest, for both 

fundamental and practical reasons. There are at least two 

approaches of such solids - one of them, starting with the 

Ginzburg-Landau functional of the free energy [1], and 

another one, starting with a polynomial Hamiltonian [2], 

[3]. The statistical behavior of a n-dimensional solid 

described by a Ginzburg - Landau functional can be 

obtained through the transfer matrix theory [4], from the 

first energy levels of an associated n-1-dimensional 

quantum Hamiltonian, with quartic anharmonicities. So, a 

classical statistical mechanical system, in n spatial 

dimensions, is equivalent to a quantum system, in n-1 

dimensions. These two systems, sometimes called dual 

systems, describe quite similar objects - aggregates of 

classical or quantum oscillators. A well-known example of 

a study of such aggregates is that done by Stoeckly and 

Scalapino [5], [6], where the evaluation of the partition 

function of a planar array of classical quartic oscillators is 

reduced to the study of a chain of quantum quartic 

oscillators. This one-dimensional Hamiltonian can be 

transformed, for weak coupling between neighbor 

oscillators, to a fermionic Hamiltonian, similar to that used 

by Schultz, Mattis and Lieb [7] in their study of Ising 

model, to Luttinger models or other 1D systems [8], [9]. 

These 1D systems provide interesting theoretical and 

experimental applications, besides other atomic [10] and 

magnetic [11] exactly solvable models. In this way, the ψ⁴ 

anharmonic solids can be linked to large classes of very 

well studied models of condensed matter theory, including 

the Ising model. 

After remarkable theoretical progress done in the '70s 

(for a review, see for instance [12]), the next decenniums 

have been dominated by numerical investigations [13], 

[14], [15] - to mention only some few ones. More recently, 

other authors used both numerical and analytical 

approximations [16], [17], for getting a deeper 

understanding of these systems. An attempt of extending 

the Ginzburg-Landau theory beyond the linear chain 

approximation has been generalized for systems with next-

near-neighbor interaction [18]. Transfer matrix theory was 

applied to the analytical studies of thermal and quantum 

phase transitions in low dimensional systems, with or 

without external fields [19]. These results have been 

critically reviewed by Lungu [20]. 

If the analytical results mentioned in the previous 

paragraph refers essentially to low dimensional systems, 

the 3D anharmonic solids have to be investigated with less 

accurate theoretical methods, the most popular of these 

being the mean field theory. However, these models give 

good predictions of structural phase transitions [2], [3]. 

The model to be considered in this paper is a d-

dimensional square lattice of quantum anharmonic 

(quartic) oscillators, interacting through elastic forces 

between near neighbors. In principle, the model can be 

developed for any value of  , but for    , it gives, in 

general, inaccurate results, including a spurious phase 

transition. Even if the model is a quantum one, the 

classical case can be easily obtained, taking the     

limit. 

The physics described by this model (we shall 

consider in this paper only the case of a real order 

parameter) is quite simple. In an 1D picture, the particle 

situated in a lattice point can be placed in one of the two 

wells of the anharmonic potential, "at the left" or "at the 

right", if they are deep enough, with respect to the energy 

of thermal fluctuations. The preference for one position 

means an ordered state, and the equivalence of both 

positions - a disordered state. For shallow wells, the 

system can become "polarized", in the sense that the atoms 

"slide" in the same direction: we have a soft-mode 

transition, which shows up at a certain temperature. For 

deep wells, the systems shows up an order-disorder 

transition, and is equivalent to an Ising model. The 
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interplay between temperature, particle mass, 

dimensionality and potential strength determines the 

critical equation. 

The main goal of this paper is to obtain an analytical 

approximation for the critical equation describing a model 

of 3D quantum anharmonic solid. We shall follow a mean-

field approach [16], [17], and use, for the determination of 

the critical temperature, a formula which involves the 

dielectric susceptibility of the model [21]. In order to 

apply this formula, we need the knowledge of the wave 

functions and of the energy levels of a quartic (two wells) 

anharmonic oscillator. It is well known that, in spite of its 

apparent simplicity, this problem defies an exact solution; 

more than that, the Rayleigh - Schrodinger perturbation 

series - in the coefficient of the quartic term of the 

potential - for all levels of energy eigenvalues are 

divergent [22]; for a review of modern developments of 

this issue, see [23]. So, the quartic potential must be 

replaced with a tractable one; we choose to use the 

symmetric double square well. It is not, evidently, exactly 

soluble, even if there are some semi-quantitative 

descriptions of its behavior [24], but analytical 

approximations for its eivenvalues can be obtained, used a 

simple approach proposed by the present authors. It is 

fortunate that, for this model, with a piecewise-defined, 

locally constant functions, the knowledge of eigenenergies 

makes possible the knowledge of eigenfunctions. As the 

case of deep wells is well understood, due to its 

equivalence with an Ising model, the most interesting case 

to be studied is that of shallow wells; this case will be 

addressed in the present paper. 

Its structure is the following. In Section 2, our model 

of anharmonic solid is shortly presented. In Section 3, a 

formula of the dielectric susceptibility, to be used in the 

evaluation of the critical temperature, is obtained. Section 

4 is devoted to a detailed study of the symmetric double 

square well. In Section 5, the critical equation is obtained. 

Final comments are exposed in Section 6. 

 

 

2. The model 
 

A simple model of an anharmonic solid, used since 

the early days of ferroelectricity (see [25 – 27]), is a lattice 

of anharmonic oscillators, connected by near neighbor 

elastic forces. It is described by the Hamiltonian: 
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where     
    for near neighbors and 0 otherwise. It can 

be used both in the study of the classical and quantum 

case; in this paper, we shall consider the quantum one. In 

order to avoid irrelevant complications, only the isotropic 

case is considered; the inclusion of anisotropy can be 

easily done. The system presents a second order phase 

transition if the dimensionality of the system is greater 

than 1, d>1. 

It is convenient to introduce dimensionless quantities, 

as follows: 

  √
 

 
x, t=
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and also the dimensionless parameter 

 

  
 

 
                                               (3) 

 

It characterizes the ratio between the on-site and inter-

site potential; small values of a correspond to shallow 

wells - the case investigated in this paper. For large values 

of a, there are several analytical approximations for the 

energy levels of the deep wells, including the WKB 

approach. 

For both shallow and deep wells, the area of each of 

the well and of the barrier (in the    ( )  plane) are 

comparable. This is why we shall approximate, later on, 

the polynomial potential with a symmetric double square 

well one, having also the wells and the barrier, of 

comparable areas. 

 

 

3. The dielectric susceptibility 
 

In this section, we shall obtain a formula for the 

electric susceptibility of a system which, in the mean field 

approximation, will give the critical equation and, in 

particular, the critical temperature of the phase transition 

occurring in the anharmonic solid described by (1). 

For the beginning, let us consider that the Hamiltonian 

of a system can be written as an exactly solvable one,    , 

and a perturbation, V: 

                                            (4) 

The eigenstates and the eigenvalues of H₀ will obey 

the equation: 

  |     
( )

|                                (5) 

In the second order of the perturbation theory, the 

energy of the Hamiltonian H is: 

      
( )

    | |     ∑
|  | |  | 

  
( )

    
( )             (6) 

If 

                                                  (7) 

 

is the energy of a particle in an electric field F, eq.  (6) will 

take the form: 

 

      
( )

     | |       ∑
|  | |  | 
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and the quantum average of the dipolar momentum is: 
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The dielectric susceptibility is given by: 
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Its statistical average is: 
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with    - the partition function for the Hamiltonian   : 

 

    ∑    (    
( )

)                       (12) 

 

At T=0, this formula takes a simpler form. If    , 

the canonical distribution function  (  ): 

 (  )   
 

 
    (    )     [ (     )]      (13) 

where               is the free energy,   - the 

internal energy and    - the entropy, can be written as: 

 (  )      [  ( )   
      

 
 

       

 
]        (14) 

 

Taking the limit of this expression for T→0, noticing 

that        ( )        and, according to the third 

principle of thermodynamics,  ( )   , we get for the 

distribution function the following form: 

 

    (  )    (  )   
   

                    (15) 

 

where    is the Kronecker function: 

 

           {
            

              
                        (16) 

 

and   - a constant, which can be obtained from the 

normalization condition, ∑  (  )    . This gives 

      , with    - the degeneracy of the ground state, 

which has always the value   =1. The physical meaning 

of (15) is the following: if    , the canonical 

distribution tends to the microcanonical distribution, 

corresponding to the ground state. 

Finally, the formula for the susceptibility is: 
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 |  | |  | 
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( )                              (17) 

 

It is, as it should, a positive quantity, as   
( )

    
( )

 
  for any m>0. 

 

 

3.1 The susceptibility and the phase transition 

 

The Hamiltonian can be put in the form: 
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In the mean-field approximation, one makes the 

replacement: 

∑                               (19) 

 

where   is the effective field, which acts as an external 

(electric) field. So, (15) becomes a sum of non-interacting 

Hamiltonians: 
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We can write this formula in the form         

with 
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 ]            (21) 

 

and the physics of the system can be obtained  from the 

one-particle Hamiltonian: 
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with 
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The average value of the reduced coordinate   is given by: 

 

      
 

 
  [  (     )]  
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with 

   ∑    (    )                      (25) 

 

The condition (24) is a self-consistent equation for 

   , as this quantity appears in the expression of   also. 

The phase transition is given by the condition    =0. It 

will be put in a convenient form in the subsequent 

paragraph. 

 Taking the derivative with respect with    , in the 

both sides of (22) we have: 

             
 

  
[

     

      
]
      

                       (26) 

 

where we replaced, according to (19), 

 

                                                   (27) 

In the same time: 

[
     

   
]
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]
      

  

                                (28) 

  [           ]             |         
 

Consequently, the critical equation (26) will take the form: 

 

                                 |                      (29) 

  

Restoring the extra-factor     , and replacing the 

reduced coordinate x with the physical one X, one gets: 
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     |                 (30) 

with    - the critical temperature of the phase transition. 

The susceptibility of this system can be obtained as 

the derivative of      with respect to the effective field 

 . We get from (22): 

 

   [ 
    

  
]
   

        |         (31) 

 
As the condition     is equivalent to      , 

from (28), (29) we get the condition: 

 

                                       (32) 

 

This relation is remarkable due to the fact that the 

phase transition in the system described by (18) can be 

obtained using only the "non-perturbed", simpler 

Hamiltonian   , defined in eq. (21). 

However, even the problem of obtaining the 

eigenvalues and the eigenfunctions (needed for the 

evaluation of the matrix element in (11)) of this "simpler" 

Hamiltonian is not an easy issue, as no exact solution is 

available, and approximate solutions treat only the deep 

well case. For shallow wells, which are essential for 

understanding the phase transitions in  ⁴ systems, the 

only way of obtaining analytical results from (11) is to use 

an exactly solvable two well potential, and the most 

convenient case is the symmetric two-well rectangular 

potential. 

     

 

4. The symmetric double square well 
 

We define the potential considering that the     

level is situated on the bump: 

 

                    ( )                                 (33)  

     

for    (
 

 
)     (

 

 
)   (

 

 
)    (   )   , and 

zero otherwise. As the potential is symmetric, the 

eigenstates will have well-defined parity. The states with 

negative energies (   ) and the states with positive 

energies (   ) must be discussed separately. 

   

4.1.  E<0: even states, wave functions and energies 

 

The wave function for even states is: 
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  ( )                        
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It has the property: 

 

                        ( )    (  )  (36)  

It is convenient to use for the potential, alternatively with 

 , the quantity  , defined  
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The continuity of the wave function and of its derivative in 

      gives: 
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and the eigenvalue equation for energy has the form: 
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The wave function is normalized if: 
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4.2. E<0: odd states, wave functions and energies  
 

Similarly, 

 

  ( )         (   
 

 
  )   

              
 

 
     

 

 
                        (43) 
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Also: 
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The continuity relations give:  
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and the eigenvalue equation is: 
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The wave function is normalized if: 
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4.3. E>0: even states, wave functions and energies 

 

In this case, instead of (32-34), we have: 
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The continuity conditions give: 
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and the energy eigenvalue equation is: 
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The wave function is normalized if: 
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4.4. E>0: odd states, wave functions and energies 

 

Similarly: 
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The continuity conditions: 
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and the eigenvalue equation is: 
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The wave function is normalized if: 
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and: 
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4.5. Approximate solutions for a shallow well 

 

Considering this problem from the perspective of 

applications in statistical mechanics, it is important to have 

a correct description of the occurrence of the first negative 

energy level. We shall find the solutions of the eigenvalue 

equations, for this case. We shall investigate firstly the 

negative energy states, and later on the positive energy 

states. 

 

4.5.1. Negative energy states 

 

It is easy to see that the eigenvalue equation for 

negative energy has solutions only if 
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and 
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the eigenvalue equation for negative energy is: 
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As the root of the equation occurs at very small  , and the 

argument of coth is quite insensitive near   (  ): 
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Keeping only the first term in the series expansion: 
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and: 
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 √  
√ <0                            (72) 

 

    The minimum value of the potential  , after which a 

state of negative energy occurs, is: 
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It might be compared to the first level in an infinite square 

well of length       : 

  
( )

 
    

  (    ) 
 

Consequently: 

                              
    

  
( )  (  

 

  
)
 

                         (74) 

So, the potential which produces the first state of 

negative energy is comparable to (in fact, slightly larger 

than) the first level of the infinite well. 

 

 

4.5.2. Positive energy states 

 

Even states 

 

In the new variable z, the eigenvalue equation (54) is: 
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Numerical investigations of this equations show that it 

can be replaced, with minor loss in the precision of the 

solutions, with its "asymptotic form", i.e. considering that: 
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and that (75) can be replaced with: 
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    Looking for solutions near                
 

  
, we have: 
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which gives the quantization condition: 

 
 

 
√     

 

 
(  

  

  
)                  (  ) 

or: 

 √           
  

  
                     (  ) 

It can be written as: 
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The root relevant for our discussion is: 
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The factor 
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is very closed to  , even for small  : 
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and (82) can be replaced with: 
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Odd states 

 

Following exactly the same steps as for even states, 

we get, instead of (83): 
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5. The critical equation 
 

5.1. Dipole matrix elements 

 

Due to symmetry, only the matrix elements of the 

coordinate   between the ground state (which is an even 

one) and odd states of positive energy are non-zero, so we 

have to evaluate: 
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( )( )             (  ) 

 
where   labels the odd states. The previous notation (57) is 

slightly modified, being replaced with: 
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Also, for the even state: 
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In the lowest order in  , 
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Also, in the lowest order in ε: 
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However, the  -dependence of the matrix element is 

insignificant compared to the exponential factors, and the 

matrix element can be written as: 
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with: 
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As the quantities   
    (   ) and   

  
  (   ) depend only on the geometry of the well (  and 

 ), and not on the mass m, they are just numbers, playing a 

peripheral role in the expression of susceptibility. 

However, these formulas will not be used in the present 

paper, where only the dominant term in the expression of 

susceptibility will be taken into account. 

 

 

5.1.1. The critical temperature 

 

The susceptibility is given by the formula: 
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where the upper index ( ) refers to the odd levels. The 

first term: 
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                                 (   ) 

is the dominant one. 

The partition sum can be approximated through the 

expression:     
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where    is the Jacobi elliptic function. In the lowest 

approximation, 
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  )               (   ) 

With respect to the critical equation, we are merely 

interested in the connection between temperature, mass 

and potential - in our case,  . It is close to the value     , 

so it can be written as:         . The dipole matrix 

element depends on geometry (i.e. on parameters    ) 

only (not on mass or temperature; they enter in the 

expression of eigenenergies). Finally, we get the following 

expression for the critical equation: 

 

  
   ( 
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 √  
√  

    

    

           (   ) 

 

It gives the connection between the temperature  , the 

mass   and the potential,  . The result is correct for 

    and    , but must be not taken into consideration 

for    , as in this case the mean-field theory gives 

inaccurate predictions. 

In the classical limit,     and    , so eq. (102) 

becomes: 
 

 
 |

   

 
|                                   (   ) 

 

It bears a quite interesting resemblance with a similar 

result, obtained in the mean-field approximation, for a 

planar array of Ginzburg - Landau chains (the 3rd paper in 

[19], eq. (43)). A formula similar to (103) has been obtain 

for the first time by Scalapino, Imry and Pincus [28], using 

a different approach. Numerically, the result was firstly 

obtained by Bishop and Krumhansl [29]. It is also in 

qualitative agreement with more recent Monte Carlo 

simulations for a polynomial potential [13-15]. 

 

 

6. Conclusions 
 

The critical equation describing the phase transition in 

a rectangular array of anharmonic (quartic) oscillators, 
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interacting through elastic forces, was obtained using a 

mean-field approximation of the statistical problem. 

Further on, the on-site polynomial (quartic) potential was 

replaced with a simpler one - the symmetric double square 

well potential. Original methods for obtaining its energy 

eigenvalues [30] have been developed - a contribution 

which presents interest in itself. A peculiarity of this 

potential is that, if the energy eigenvalues are known, the 

eigenfunctions are also known. In this way, it is possible to 

evaluate the electric susceptibility of the model, and to 

obtain the critical equation. A similar exercise could be 

repeated with another simpler model of the quartic 

potential - for instance, the so-called "two-center harmonic 

oscillator". The resemblance of the result obtained here for 

the critical temperature, with the result given by another 

mean-field approximations or numerical methods [31], 

suggests that the approach used in this paper is justified. 

In fact, it gives the first analytic approximation for the 

case of shallow wells, contributing to a better 

understanding of structural phase transitions; indeed, till 

now, only the case of deep wells has been studied 

analytically. The results are in qualitative agreement with 

Monte Carlo simulations. 
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